[Electron fields in clinical application. A comparison of pencil beam and Monte Carlo algorithm].
نویسندگان
چکیده
BACKGROUND AND PURPOSE For several years three-dimensional treatment-planning systems have used pencil beam algorithms in the calculation of electron fields. Nowadays, exact Monte Carlo methods are commercially available, showing good correspondence to experimental results. Clinical examples are investigated to find differences in the dose distribution of treatment plans, which are calculated with both pencil beam and Monte Carlo algorithm. MATERIAL AND METHODS Two different clinical applications are regarded: (1) an irradiation of the chest wall, and (2) an electron field to the vertebral column. The dose distributions are calculated by Oncentra MasterPlan on the one hand, using the Monte Carlo code VMC++, and by Helax TMS on the other hand (both Nucletron B.V., Veenendaal, The Netherlands). Profiles and depth dose curves are evaluated by the Verisoft program of PTW (Freiburg, Germany). RESULTS In the case of chest wall irradiation, the depth dose curves for the three investigated energies, 9, 15 and 21 MeV, agree rather well, also in lung tissue. The mean value for the lung differs only by 4% related to the dose maximum. In the case of vertebral column irradiation, however, the dose difference is more pronounced and, in the prevertebral region, is 56% lower for the VMC++ plan than in the pencil beam calculation. CONCLUSION For irradiations of the chest wall, dose distribution calculations by means of pencil beam algorithm may be applied. Calculating electron dose distributions in cases of larger bone inhomogeneities, the more exact Monte Carlo algorithm should be preferred.
منابع مشابه
Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملComparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation
Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous pha...
متن کاملMonte Carlo estimation of electron contamination in a 18 MV clinical photon beam
Background: The electron contamination may reduce or even diminish the skin sparing property of the megavoltage beam. The detailed characteristics of contaminant electrons are presented for different field sizes and cases. Materials and Methods: The Monte Carlo code, MCNPX, has been used to simulate 18 MV photon beam from a Varian Linac-2300 accelerator. All dose measurements were car...
متن کاملMeasurements of Photon Beam Flattening Filter Using an Anisotropic Analytical Algorithm and Electron Beam Employing Electron Monte Carlo
Introduction: This study aimed to report the measurement of photon and electron beams to configure the Analytical Anisotropic Algorithm and Electron Monte Carlo used in clinical treatment. Material and Methods: All measurements were performed in a large water phantom using a 3-dimensional scanning system (PTW, Germany). ...
متن کاملComparison of MCNP4C, 4B and 4A Monte Carlo codes when calculating electron therapy depth doses
ABSTRACT Background: accurate methods of radiation therapy dose calculation. There are different Monte Carlo codesfor simulation of photons, electrons and the coupled transport of electrons and photons. MCNPis a general purpose Monte Carlo code that can be used for electron, photon and coupledphoton-electron transport.Monte Carlo simulation of radiation transport is considered to be one of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
دوره 183 8 شماره
صفحات -
تاریخ انتشار 2007